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ABSTRACT 

Alcohol Use Disorder (AUD) remains a challenging condition with limited effective treatment options; 

however new technology in drug delivery and advancements in pharmacology have paved the way for 

discovery of novel therapeutic targets. This review explores emerging pharmacological targets that offer 

new options for the management of AUD, focusing on the potential of somatostatin (SST), glucagon-

like peptide-1 (GLP-1), nociceptin, neuropeptide S (NPS), and vasoactive intestinal peptide (VIP). These 

targets have been selected based on recent advancements in preclinical and clinical research, which 

suggest their significant roles in modulating alcohol consumption and related behaviors. SST dampens 

cortical circuits, and targeting both the SST neurons and the SST peptide itself presents promise for 

treating AUD and various related comorbidities.  GLP-1 interacts with the dopaminergic reward system 

and reduces alcohol intake. Nociceptin modulates mesolimbic circuitry and agonism and antagonism 

of nociceptin receptor offers a complex but promising approach to reducing alcohol consumption. NPS 

stands out for its anxiolytic-like effects, particularly relevant for the anxiety associated with AUD. VIP 

neurons are modulated by alcohol and targeting the VIP system presents an unexplored avenue for 

addressing alcohol exposure at various stages of development. This review aims to synthesize the 

current understanding of these targets, highlighting their potential in developing more effective and 

personalized AUD therapies, and underscores the importance of continued research in identifying and 

validating novel targets for treatment of AUD and comorbid conditions. 

 

INTRODUCTION 

Despite extensive efforts in prevention and intervention, Alcohol Use Disorder (AUD) remains a 

pervasive and challenging condition to treat1–3. AUD is a major public health issue, affecting over one-

tenth of Americans aged 12 and older in 2020, with a notable increase following the Covid-19 

pandemic4–7. AUD, as defined by the Diagnostic and Statistical Manual of Mental Disorders, Fifth 

Edition (DSM-5), is characterized by a pattern of alcohol use leading to significant impairment or 

distress8. In the United States, 78% of individuals over the age of 12 have consumed alcohol, with 

similar consumption rates among both men and women8. Alarmingly, about 21% engage in problematic 

forms of alcohol consumption, such as binge drinking, and nearly 6% report heavy drinking. The 

economic impact of alcohol misuse is staggering, estimated at $249 billion in 2010, a figure that has 

likely grown in the wake of increased alcohol consumption during the pandemic7,8. Furthermore, the 

National Institute on Alcohol Abuse and Alcoholism (NIAAA) has identified an increasing trend of high 

intensity drinking 8,9. The lack of reliable biomarkers for AUD impedes the development and testing of 

new treatments10, and despite significant research investments by the National Institutes of Health 



(NIH) and others in understanding the brain mechanisms of AUD, the last decade has seen a scarcity 

of new FDA-approved treatments for this disorder11. 

Advancements in understanding the neurocircuitry and neuromodulators involved in alcohol misuse 

and the transition to dependence have provided valuable insights12–19, yet there remains a critical need 

for further exploration of novel pharmacological targets. This exploration is essential to address the 

complex nature of AUD and to develop new treatment options that can effectively mitigate the 

multifaceted impact of alcohol consumption20,21. The current pharmacotherapies for AUD, while 

moderately effective, are primarily focused on specific stages of the disorder, such as reducing 

consumption or aiding in maintaining abstinence22. However, these treatments often fall short in 

addressing the broader spectrum of AUD-related behaviors and symptoms – for example, cognitive 

decline23, inflammation24,25, mitochondrial damage26–29, and liver dysfunction30. Targets such as 

corticotrophin releasing factor31–36, neuropeptide y37–39, and dynorphin40 have been reviewed at 

length41 – therefore here we speculate on interesting emerging novel targets that we believe warrant 

further investigation. While many other emerging targets exist, we have focused on somatostatin (SST), 

glucagon-like peptide 1 (GLP-1), nociceptin, neuropeptide S (NPS), and vasoactive intestinal peptide 

(VIP).  

In addition, the field of neuropharmacology is rapidly evolving, leveraging innovative animal models 

and cutting-edge research techniques. Rapid and high-throughput animal models have become crucial 

in swiftly identifying and validating new potential targets for AUD. These models expedite the 

translation of preclinical findings into clinical applications, bridging the gap between laboratory 

research and real-world treatment scenarios.  Technological advancements in neuropharmacology are 

significantly enhancing the potential of emerging targets in the treatment of AUD. Innovations in drug 

delivery systems, ultrasound, small molecule analogues, nanoparticles, nanodroplets, and 

nanoemulsions, are enabling more effective therapeutics and localized penetration of the blood-brain 

barrier42–50. This is crucial for the greater efficacy of new pharmacological targets, ensuring that 

therapeutic agents effectively reach specific brain areas involved in AUD. Additionally, advancements 

in gene therapy51 and novel neuromodulation techniques52,53 are providing novel ways to directly 

influence neural systems associated with AUD. These technologies are making previously challenging 

targets more accessible and open new avenues for exploring and validating emerging targets in AUD 

treatment.  

 

SOMATOSTATIN 



Somatostatin (SST) neurons play a critical role in the central nervous system, functioning as key 

modulators of neurotransmission and neuroendocrine signaling54–58. These neurons, which produce 

the inhibitory neuropeptide somatostatin, are widely distributed across various brain regions, including 

the cortex, hippocampus, and amygdala59–61. SST exists in two primary isoforms, SST-14 and SST-28, 

and exerts its effects through activation of 5 G-protein-coupled somatostatin receptors (SSTRs)57,62–64. 

Known for their inhibitory action on the release of hormones and neurotransmitters, SST neurons are 

integral to regulating neuronal excitability and synaptic plasticity and have gained attention for their 

role in substance use disorders54–57,65,66. SST is released from SST neurons67 and acts to dampen cortical 

signaling in a long-lasting manner through activation of SST receptors68. The involvement of SST 

neurons and SST in a range of physiological processes including neurological conditions highlights its 

importance58 and potential in modulating other states involving the cortex. 

Both SST neurons and their namesake neuropeptide are promising therapeutic pursuits for AUD. SST 

neurons within the prefrontal cortex (PFC)66,69,70 and regions of the amygdala70–72 display robust 

alterations from multiple animal models of alcohol exposure and consumption. Glutamatergic drive 

onto PFC SST neurons is reduced in early abstinence from alcohol70,73.  Consistent with this effect, the 

intrinsic excitability of SST neurons is reduced in abstinence from alcohol69. The specific effects of 

alcohol on SST neurons in the PFC may be dose74 and receptor dependent75, and adolescent-exposure 

specific changes may emerge due to the unique circuitry of the developmental brain66,76,77. Further 

investigation into alcohol modulation of SST neurons throughout development in the cortex and 

elsewhere is necessary. Alcohol consumption reduces SST immunoreactivity75,78 further supporting the 

role for these neurons, and potentially the peptide itself, in sensitivity to alcohol. G-protein coupled 

receptors (GPCRs) uniquely expressed on SST neurons such as mGluRs79 may provide a promising 

route for pharmacological restoration of SST neuron function following alcohol80. 

In addition, emerging evidence suggests SST may be a therapeutic target itself. Modulating SST 

receptor activation in the PFC can alter exploratory and anxiety-like behaviors related to alcohol 

consumption69. Modulation of SST through cannula administration (of both SST and SSTR4 agonists) 

to the amygdala can reduce binge drinking75. Further work on the peptidergic promise of SST should 

focus on sex differences69 as well as SST’s potential additional actions as a vasoconstrictor in the central 

nervous system81. Studies have shown that the response of SST neurons to alcohol and the impact of 

SST on behavior can vary significantly between males and females68,69. This variation highlights the 

importance of considering sex as a critical factor in developing SST- and SSTR-targeted therapies for 

AUD58. Additionally, the broader physiological role of SST, including its potential to modulate non 

neuronal cell types82 within the central nervous system warrants further exploration. 



New translational clinical work has further enthused SST’s relevance in AUD. Cortical SST gene 

expression strongly correlates with alcohol-induced changes in resting-state activity in a protective-

fashion in healthy men83. SST gene expression is also reduced in the hippocampus of individuals with 

broader substance use disorders84. While SST has a strong correlation with multiple psychiatric 

disorders58, this emerging clinical literature suggests its potential unique role in substance misuse and 

alcohol misuse – further enthusing it as a potential target. Multiple FDA-approved analogues of SST 

exist (e.g., Octreotide, Sandosin) and have modest risk profiles85–87. The SST analogue Octreotide has 

long been used to mitigate alcohol-induced hypotension88 in patients, and in animal models, may 

reduce alcohol-mediated neuropathic pain89, and alcohol induced gastric damage90 suggesting further 

therapeutic relevance for treating AUD simultaneously with comorbid conditions.  

 

GLUCAGON-LIKE PEPTIDE 1 

Glucagon-like peptide-1 (GLP-1)- and its g-protein coupled receptor (GLP-1R)- targeting drugs, widely 

recognized for their benefits in diabetes and weight management, have also sparked significant 

scientific interest due to their potential impact on the neurocircuitry of food intake and drug reward91,92. 

Secreted by the gut, GLP-1 is a 30 amino acid peptide93 predominantly known for its role in stimulating 

insulin secretion and inhibiting glucose secretion94. GLP-1 produced in the central nervous system itself 

has been implicated in inducing satiety95, stress responses96, and playing a role in the regulation of 

glucose levels97. GLP-1Rs are found throughout the brain with high levels in the hypothalamus and 

brainstem98. However, its overall pharmacological profile both in the periphery and the brain are not 

fully known.  

Emerging research has revealed that peripheral injections of GLP-1 or an analogue reduced alcohol 

intake in male rats, an effect replicated by direct administration of these drugs to the ventral tegmental 

area (VTA)99 – broadly suggesting an interaction with dopaminergic reward circuitry. These findings 

have been extended to mice in thematically complementary studies100, though notably, more work is 

needed to establish the role of GLP-1 in females. Importantly, the co-reduction in food intake along 

with alcohol intake101 may limit or enhance its treatment efficacy in various clinical populations and 

should be specifically and thoroughly characterized. 

Similar to SST, the human clinical literature has provided corresponding support for GLP-1 as a target 

for AUD. Variability in GLP-1 receptor gene variants is correlated with functional connectivity 

measurements in individuals with high or low risk for AUD102. Further comprehensive work by the 

same group has shown not only an interaction between GLP-1R expression levels and individuals with 

AUD (with greater receptor mRNA expression in the hippocampus of postmortem brains of individuals 



with AUD), but that intravenous alcohol administration reduced GLP-1 levels103. Importantly, as GLP-

1R targeting drugs are now rapidly available in the global market104–106, correlational studies of alcohol 

use in these populations will likely emerge with time and provide further important insight. GLP-1's 

multifaceted role in metabolic regulation and its emergent impact on reward pathways underscore its 

potential as a therapeutic target for disorders extending beyond diabetes, including AUD, warranting 

further research to fully harness its clinical applications. 

 

NOCICEPTIN 

Nociceptin (also known as orphanin FQ) is a unique member of the opioid peptide family, binding to 

the nociceptin opioid peptide (NOP) receptor (originally named opioid receptor-like 1)107–109. It is far 

less investigated as compared to mu- delta- and kappa- opioid systems. Nociceptin is 17 amino acids 

long110, and is involved in various neural processes, ranging from pain modulation111 to behavioral 

responses to stress112 and reward mechanisms113. Although it shares structural features with classical 

opioids, nociceptin's effects are often distinct, indicating a complex role in both normal physiology and 

the pathophysiology of addiction114. Nociceptin mediates consumption of other natural liquid 

rewards115, and likely alters the rewarding properties for multiple drugs116–121.  

Increasing evidence suggests nociception agonism and antagonism can reduce alcohol consumption. 

While intracerebroventricular administration of nociceptin increases alcohol intake, indicating a 

facilitative effect on alcohol's rewarding properties, repeated exposure to nociceptin leads to a decrease 

in alcohol consumption122. This dichotomy suggests a sophisticated interaction between nociceptin and 

the reinforcing attributes of alcohol, pointing to potential receptor specific effects. Later work by the 

same group showed nociception analogues reduce alcohol intake in males120. Another study found that 

nociceptin agonists reduce alcohol consumption and prevented reinstatement and withdrawal 

symptoms in alcohol preferring rats123. A separate study corroborated these results indicating 

nociceptin reduces withdrawal symptoms and anxiety-like behaviors in rats with acute and chronic 

alcohol intoxication124. Similar results were obtained in the rostromedial tegmental nucleus where 

nociception signaling reduced alcohol consumption and attenuated anxiety- and depressive- like 

behaviors in alcohol withdrawn rats125. Dysregulation of nociception receptor signaling in the central 

amygdala (CeA) contributes to excessive alcohol intake and is rescued by local micro-infusion of 

nociceptin126.  

Interestingly, peripheral injections of NOP receptor antagonists can also reduce alcohol consumption, 

stress-induced alcohol seeking, and alcohol-induced stimulation of brain reward pathways in alcohol 

preferring rats127. The effects of NOP receptor antagonism in the brain may depend on the precise brain 



region compounds are targeted to, with reductions in consumption seen following micro-injections to 

the CeA and VTA, but not nucleus accumbens (NAc), of male and female alcohol preferring rats 128. A 

similar separate study from this same group found that antagonism of NOP receptors in the VTA and 

the CeA, but not in the NAc reduced alcohol seeking129. These studies highlight the complex 

bidirectional role of nociceptin in alcohol use and point to its role in particular key addiction related 

regions such as the CeA and VTA. Future work should address the role of NOP receptor agonism and 

antagonism in the same study. Overall this literature suggests that alcohol intake might downregulate 

the endogenous nociceptin system, disrupting stress regulation and enhancing alcohol consumption114. 

The role of both NOP receptor agonists and antagonists in decreasing alcohol consumption could be 

due to receptor desensitization or differential modulation of brain regions associated with reward and 

addiction, indicating a need for further region-specific and mechanistic research to precisely deliver 

treatments for AUD.  

Recently, clinical studies have emerged in the literature for nociception antagonists and AUD, with 

antagonists advancing to clinical trials with great promise130. NOP specific agonists and partial agonists 

have shown promise in primates131. Buprenorphine, a semi-synthetic derivative that functions as a 

partial agonist at μ-opioid and NOP receptors, reduces alcohol consumption in monkeys, is effective in 

treating opioid use disorder132,133, and has been used off-label for depression134, suggesting it may be 

beneficial in AUD with comorbid depression. Further research is warranted to investigate the potential 

of NOP receptors in AUD treatment, potential for mitigating alcohol abuse, and sex specific effects. 

These and related compounds may be particularly useful in individuals with comorbid depression and 

AUD135. 

 

NEUROPEPTIDE S 

Neuropeptide S (NPS), a recently identified peptide, is notable for its distinctive behavioral effects, 

including anxiolytic-like actions and the promotion of wakefulness136–138 (for review on NPS see139,140). 

NPS is a 20 amino acid neuropeptide141 which binds to and activates the NPS receptor (NPSR), a 

previously orphan G-protein coupled receptor known as GPR154 or GPRA142,143. NPS is found in brain 

areas including the parabrachial region and the locus coeruleus 139, and the NPSR is unique in that it is 

an excitatory GPCR (Gαs and Gαq) leading to elevated intracellular levels of cAMP and calcium142,143. 

NPS is colocalized with excitatory neurotransmitters, further supporting the view that NPS is part of an 

excitatory signaling system. 

In the context of AUD, NPS and its receptor, NPSR, are integral to the brain's response to alcohol and 

associated anxiety. Variations in the NPSR1 gene are linked to the risk and patterns of AUD, showing 



notable differences based on sex and age 144,145. Several preclinical studies have indicated that delivery 

of NPS (both intraperitoneal and intracerebroventricular) can decrease alcohol seeking in mice; 

however, some have shown conflicting results139 likely having to do with comorbid variables such as 

stress and anxiety. The deletion of the NPSR gene in mice reduces sensitivity to the effects of alcohol, 

while intracerebroventricularly administered NPS can diminish alcohol effects in mice146. NPS may also 

be affected by alcohol with marked increases in expression during withdrawal 147. Rats subjected to a 

week of alcohol intoxication exhibit increased NPSR gene expression in various brain areas, with more 

pronounced changes observed after 7 days of withdrawal147. Functionally, this upregulation correlates 

with enhanced anxiolytic effects of NPS147. An increase in NPSR during withdrawal from alcohol 

suggests a possible role in alleviating associated anxiety, a theory supported by genetic studies linking 

NPSR variations to anxiety traits in AUD145. Chronic alcohol exposure enhances the anxiolytic and anti-

depressive effects of NPS148 further supporting the potential of NPSR to reduce anxiety experienced in 

AUD patients. These studies indicate that NPS not only modulates anxiety but also is involved with and 

potentiated by alcohol, future studies are needed to offer insights into behavioral effect of NPS both 

during alcohol consumption and during withdrawal.  

Intriguingly, NPS’s impact on alcohol consumption varies across genetic lines139 (known to have varying 

basal anxiety levels and alcohol preference) as best exemplified in the differential responses seen 

between alcohol-preferring (msP) rats and Wistar rats149,150. While NPS reduces alcohol intake in msP 

rats, known for their excessive alcohol consumption and anxiety-like behaviors, it promotes alcohol-

seeking behavior in Wistar rats. NPS likely reduces alcohol consumption through anxiolytic-like effects, 

suggesting NPS may be most useful in treating AUD populations with comorbid anxiety. These studies 

underscore the complexity of NPS action and highlights the necessity of considering genetics, anxiety 

levels, and behavioral context in its potential therapeutic application for AUD. 

 

Targeting the NPS/NPSR system holds significant promise for AUD treatment. The first NPSR specific 

agonist was only recently developed151, which will hopefully spur greater clinical interests. Future 

developments in this area could help researchers elucidate a role for the NPSR in alcohol consumption 

and withdrawal symptoms. This approach could effectively tackle the challenges such as anxiety 

experienced during withdrawal and relapse, major obstacles in AUD therapy. NPS's capacity to regulate 

stress and anxiety responses, along with its enhanced efficacy in alcohol-withdrawn subjects148 

indicates that targeting this system could be highly beneficial in addressing AUD's mood-related 

complexities. Continued research is vital to enhance our understanding of NPS's impact on AUD and 

to create specialized treatments that leverage this neuropeptide system's therapeutic potential. 



 

VASOACTIVE INTESTINAL PEPTIDE 

Vasoactive intestinal peptide (VIP) is a 28 amino acid152 neuropeptide in the neocortex, it is 

predominantly expressed in GABAergic neurons and modulates cortical circuits through its G-protein 

coupled receptors VPAC1R and VPAC2R153–156. VPAC1R and VPAC2R are expressed on neurons and 

immune cells157 and VIP acts directly on both158.  VIP reduces inflammation159,160, acts as a 

vasodilator161, and modulates insulin and somatostatin release162. It is known in the central nervous 

system for its involvement in the circadian cycle governed by the suprachiasmatic nucleus163. High 

levels of VIP are expressed in emotion and addiction related regions such as the frontal cortex, 

amygdala, hypothalamus and hippocampus164. VIP is thought to depolarize neurons and activate a 

hyperpolarization-activated cation current through hyperpolarization-activated cyclic-nucleotide-

gated channels172. While pituitary adenylate-cyclase-activating polypeptide (PACAP), also activates 

VPAC1R and VPAC2R, VIP and PCAP are pharmacologically distinct173. Targeting PACAP has shown 

promise in modulating alcohol drinking behaviors174–178 further supporting a role for VIP and VPAC1R 

and VPAC2R as emerging targets for AUD.164 In addition to their role in the suprachiasmatic nucleus, 

VIP neurons are a major subset of 5HT3 serotonin receptor expressing neurons and are located 

throughout the superficial layers of the neocortex172–175. They are known to release both GABA and 

VIP176. VIP neurons primarily target somatostatin (SST) neurons, playing a vital role in modulating 

cortical excitability and output through a disinhibitory mechanism60,177,178. 172173174–178 

The influence of VIP extends to a significant interaction with alcohol. Alcohol is known to increase 

plasma levels of VIP179, suggesting alcohol may stimulate VIP release. VIP-stimulated release of β-

endorphin is affected by alcohol180. Genetic studies have identified a link between VIP gene 

polymorphisms and increased alcohol consumption181.180 Further alcohol exposure has been shown to 

decrease expression of VIP. Long-term exposure to alcohol and withdrawal significantly reduces the 

synthesis and expression VIP in rats, with a notable decrease in VIP mRNA levels in the 

suprachiasmatic nucleus182. Neonatal exposure to alcohol can lead to a reduction in the density of VIP 

neurons in the rat suprachiasmatic nucleus183, indicating potential circadian disruptions and a 

increased vulnerable to early alcohol exposure. This relationship between VIP and alcohol has been 

extended to animal models, where VIP has been shown to affect the development of alcohol tolerance184  

however, further behavioral testing on the effects of VIP on alcohol consumption in both males and 

females are warranted. 

Alcohol has also been shown to modulate VIP neurons. A recent study found that bath application of 

alcohol in cortical slices activates cortical VIP neurons, while chronic alcohol consumption in mice can 



lead to a decrease in the excitability of VIP neurons, a potential compensatory mechanism185. Further, 

VIP neurons in the cortex of male mice were found to remain hypoactive in withdrawal while females 

return to normal levels, suggesting sex differences in recovery of VIP signaling during withdrawal185. 

Increased VIP neuron activity following exposure to acute alcohol may correspond to increased VIP 

releaese. Modulation of VIP neuron activity by alcohol highlights the intricate relationship between VIP 

and alcohol exposure and underscores the importance of future investigations into the effect of alcohol 

and withdrawal on VIP neurons throughout development and across sexes.  

The relationship between VIP and alcohol consumption suggests potential therapeutic applications. 

VIP may cross the blood brain barrier186, and delivery to the brain can be enhanced using intranasal 

administration of VIP incorporated into nanoparticles187. Like SST, targeting VIP neurons also presents 

promise in reducing alcohol consumption. Since VIP-INs express 5-HT3 receptors, and their 

antagonism reduces alcohol consumption188, targeting VIP neurons through other receptors for 

instance GPCRs expressed on VIP neurons offers a promising alternative to 5-HT3 antagonists. 

Moreover, targeting VIP presents promise as an unexplored target for AUD and comorbid conditions 

such as diabetes and inflammatory diseases, as well as protective against the effects of early alcohol 

exposure. Multifaceted approaches targeting VIP neurons, VIP release, and VPAC1 and 2 could lead to 

novel and effective treatments for alcohol-related disorders. The largely unexplored role of the VIP 

system in alcohol use, circuit modulation, and behavior, underscores the importance of future studies 

into VIP needed to further establish its role as a therapeutic target for Alcohol Use Disorder. 

 

DISCUSSION AND FUTURE DIRECTIONS 

The complexity of AUD, frequently presenting alongside other psychiatric disorders, highlights the 

urgent need for novel ligand and receptor targets to mitigate the diverse impacts of this disorder. 

Ideally, emerging treatments will focus not only on addiction management but also address the 

underlying physiological damage and co-occurring symptoms of AUD. It is crucial to also assess the 

addiction potential of new therapies themselves, and to consider sex-specific responses and genetic 

diversity. Additional priorities should include evaluating long-term health effects, managing side 

effects, and specialized treatments for vulnerable populations.  

We have scrutinized a spectrum of emerging targets for AUD, each at various stages of development, 

from recent preclinical discoveries to those moving towards clinical trials. This is by no means an 

exhaustive list of emerging targets – others such as neuropeptide pituitary adenylate cyclase-activating 

polypeptide167–171, neurotensin189–196, neurokinins197, cholecystokinin198, and parvalbumin73,199,200 

similarly deserve further attention. For example, ghrelin, a hormone predominantly secreted by the 



stomach, plays a critical role in regulating appetite, energy metabolism, and stimulating 

neurogenesis201. Antagonism of its receptor (growth hormone secretagogue receptor) is emerging 

therapeutic target for AUD and alcoholic liver disease, warranting clinical trials202–205. Likewise, 

orexins (also known as hypocretin), a neuronal and peptidergic population most well characterized for 

their role in energy homeostasis and wakefulness206,  may also play a pivotal role in alcohol and 

substance misuse (recently reviewed; see207). Further, there are several well-studied receptor targets 

such as the metabotropic glutamate receptor 2 (mGlu2), which have shown promise in treating 

AUD205,208,209. While this review focuses largely on peptide targets, emerging targets ranging from 

natural products and psychedelic compounds to lipid transmitters have proven promising in reducing 

alcohol consumption210–214.  

With the advent of transgenic mouse lines, genetically encoded optical biosensors, and optogenetics, 

alongside advancements in electrophysiology and in-vivo microscopy, we are on the cusp of being able 

to monitor the interactions of drugs and their targets in real time within behaving organisms67,215–218. 

This not only enables precise mapping of receptor activity but also offers a window into the complex 

signaling pathways and temporal patterns that govern alcohol use and dependence. Beyond receptor 

interactions, the focus is expanding to encompass the role of these targets as biomarkers, and 

alternative means for modulation, such as enzymes that synthesize or degrade these targets219, 

providing an innovative angle for therapeutic intervention. Furthermore, the integration of single-cell 

RNA sequencing into AUD research220,221 promises to dissect the heterogeneity of neuronal responses 

to alcohol, enhancing the specificity of treatments across the spectrum of comorbidities that accompany 

AUD. New targets will continue to emerge along with technological advancements that allow for greater 

specificity in treatment during various stages of the transition of casual substance misuse to 

dependence222,223 as well as for various individual comorbidities.  

It's prudent to consider these innovative targets in conjunction with advancements in drug delivery and 

neuromodulation, like new methods of delivering treatments to the brain50 and non-invasive 

techniques like focused ultrasound for neuronal modulation52,53. While targeted micro-infusion into 

specific brain regions is invaluable for isolating central effects and reducing peripheral side effects in 

studies, and a comprehensive examination of the systemic effects of these compounds is essential, as 

many of the targets discussed also significantly influence the gastrointestinal system and other 

peripheral organs224–228. Furthermore, the interplay between alcohol and various conditions such as 

eating disorders229, diabetes230, and cognitive decline231 demands more research. This need is especially 

urgent given the increasing number of elderly in the U.S.232. Genetic models of neurodegenerative 

diseases are helping to shed light on the interaction between alcohol and aging233–235. Notably, certain 

targets, like SST have a multifaceted role in both alcohol effects and aging233,236 while also exhibiting 



protection against alcohol induced pathophysiology in the periphery88–90 presenting a chance to 

address a variety of comorbid conditions. Additionally, in-vitro approaches like cerebral organoids237 

could facilitate high-throughput screening for AUD treatment targets, and the emergence of wearable 

biosensors promises more information on AUD and its diverse effects238. 

The literature suggests multiple favorable emerging targets for the treatment of AUD, some of which 

have FDA approved therapies already available, and all of which should be pursued with enthusiasm. 

The burgeoning array of potential targets and innovative technologies in our review heralds a new era 

of precision in treating AUD, promising to tailor therapies to individual needs and stages of addiction 

amidst an aging population with diverse comorbidities. 
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